Leach Line™ X Ω

Heap leaching for copper, gold & silver mines.

→ 12007 - 16009 - 16010 - 16012 - 20010 - 20012

Self Cleaning Mechanism

High Clogging Resistance

Anti-Migration Mechanism (optional)

Leach Line $X^{\mathbb{M}}$ dripper's flow path is the industry's widest allowing particles to pass easily through the dripper, virtually eliminating cloging. Drippers are welded into a wall of seamless tubing, providing added strength and durability. The dripperline is made with UV and acid resistant polyethylene tubing, the highest quality resins available.

Available diameters: 12, 16 and 20 OD (outside diameter).

Available flow rates: 1.0, 1½, 2.0, 4.0 and 8.0 l/h.

Benefits & Features

- ✓ Industry's widest dripper flow path:
- Patented TurboNet™ technology allows for a wide labyrinth cross-section while keeping the labyrinth short - these features are critical for the proper performance of a dripper
- No laminar flow chambers in the dripper's flow path that assures superior clogging resistance
- Specially-designed filter located away from the wall of the tubing allows for reduced filter-slot width and long-term operation

- Dripper performs properly even if 90% of the filter is plugged
- Constructed of UV and acid resistant-durable polyethylene
- Five dripper flow rates provides the broadest range of flow rates available
- ✓ Low coefficient of manufacturing variability (CV)

→ APPLICATIONS

- On-surface or subsurface applications of heap leaching on -surface or subsurface, on a flat terrain and slopes
- → Pad slopes
- → When high uniformity and longer runs are required

→ ANTI-MIGRATION DRIPPERLINE RING (OPTIONAL)

PRE-INSTALLED RING

- Prevents solution migration on uneven surfaces and slopes
- Economical saves labo
- ✓ Available for 16 and 20 mm OD dripperlines

→ DRIPPERLINES TECHNICAL DATA

MODEL	INSIDE DIAMETER (MM)	WALL THICKNESS (MM)	OUTSIDE DIAMETER (MM)	MAX. WORKING PRESSURE (BAR)	MIN. FLUSHING PRESSURE (BAR)	KD	
12007	10.5	0.7	11.9	3½	4.6	0.70	
16009		0.9	9 16.0 3.0 3.5				
16010	14.2	1.0	16.2	3.5	4.0	0.40	
16012		1.2	16.6	4.0	4.6		
20010	17 5	1.0	19.5	3.5	4.0		
20012	17.5	1.2	19.9	4.0	4.6		

→ DRIPPERS TECHNICAL DATA

12007, 16009, 16010, 20010 - 0.7, 0.9 AND 1.0 MM WALL THICKNESS DRIPPERLINES

FLOW RATE (L/H)*	OPERATING PRESSURE (BAR)**	WATER PASSAGES	S DIMENSIONS		FILTRATION	CONSTANT K	EXPONENT X
		WIDTH (MM)	DEPTH (MM)	LENGTH (MM)	AREA (MM²)		
1.00	3.0 / 3.5	0.60	0.80	75	70	0.348	0.46
1.50		0.73	0.85			0.520	
2.00		0.76	1.08			0.693	
4.00		1.06	1 40	37	76	1.387	
8.00		1.68	1.40			2.774	

^{*} Flow rate at 1.0 bar pressure ** According to drippeline wall thickness

→ FLOW RATE (L/H) VS. PRESSURE (BAR)

FLOW RATE (L/H)								
	0.4	0.6	0.8	1.0	1½	2.0	2½	3.0
1.00	0.66	0.79	0.90	1.00	1.21	1.38	1.53	1.66
1.50	0.98	1.19	1.35	1.50	1.81	2.06	2.29	2.49
2.00	1.31	1.58	1.80	2.00	2.41	2.75	3.05	3.31
4.00	2.62	3.16	3.61	4.00	4.82	5.50	6.10	6.63
8.00	5.25	6.32	7.22	8.00	9.64	11.00	12.19	13.26

^{*} Nominal flow rate at 1.0 bar pressure ** 1.0 bar = 14.5 psi *** Q (flow rate) = $K*P^X$

→ 16012, 20012 - 1.2 MM WALL THICKNESS DRIPPERLINES

	FLOW RATE (L/H)*	OPERATING PRESSURE (BAR)**	WATER PASSAGES	DIMENSIONS		FILTRATION	CONSTANT K	EXPONENT X
			WIDTH (MM)	DEPTH (MM)	LENGTH (MM)	AREA (MM²)		
1	.05	4.0	0.60	0.80	75	70	0.364	0.46
1	.60		0.73	0.85			0.555	
2	10		0.76	1.08			0.728	
4	.20		1.06	1.40			1.456	
8	.40		1.68	1.40	37		2.913	

^{*} Flow rate at 1.0 bar pressure

→ FLOW RATE (L/H) VS. PRESSURE (BAR)

FLOW RATE (L/H)									
	0.4	0.6	0.8	1.0	1½	2.0	2½	3.0	
1.05	0.69	0.83	0.95	1.05	1.27	1.44	1.60	1.74	
1.60	1.05	1.27	1.44	1.60	1.93	2.20	2.44	2.65	
2.10	1.38	1.66	1.89	2.10	2.53	2.89	3.20	3.48	
4.20	2.75	3.32	3.79	4.20	5.06	5.77	6.40	6.96	
8.40	5.51	6.64	7.58	8.40	10.12	11.56	12.81	13.93	

^{*} Nominal flow rate at 1.0 bar pressure ** 1.0 bar = 14.5 psi *** Q (flow rate) = $K*P^X$